
Package: SOAs (via r-universe)
September 9, 2024

Title Creation of Stratum Orthogonal Arrays

Version 1.4-1

Description Creates stratum orthogonal arrays (also known as strong
orthogonal arrays). These are arrays with more levels per
column than the typical orthogonal array, and whose low order
projections behave like orthogonal arrays, when collapsing
levels to coarser strata. Details are described in Groemping
(2022) ``A unifying implementation of stratum (aka strong)
orthogonal arrays''
<http://www1.bht-berlin.de/FB_II/reports/Report-2022-002.pdf>.

Depends R (>= 3.6.0), DoE.base (>= 1.2)

Imports stats, combinat, FrF2, igraph, lhs (>= 1.1.3), conf.design,
sfsmisc, partitions

License GPL (>= 2)

Encoding UTF-8

URL https://github.com/bertcarnell/SOAs

BugReports https://github.com/bertcarnell/SOAs/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://bertcarnell.r-universe.dev

RemoteUrl https://github.com/bertcarnell/soas

RemoteRef HEAD

RemoteSha a572d51b3c532de72fc196acb01443c6f55b51db

Contents
SOAs-package . 2
contr.FFbHelmert . 4

1

http://www1.bht-berlin.de/FB_II/reports/Report-2022-002.pdf
https://github.com/bertcarnell/SOAs
https://github.com/bertcarnell/SOAs/issues

2 SOAs-package

contr.Power . 5
contr.TianXu . 6
createSaturated . 7
fastSP . 8
guide_SOAs . 10
guide_SOAs_from_OA . 11
mbound_LiuLiu . 13
MDLEs . 14
ocheck . 15
OSOAs . 17
OSOAs_hadamard . 19
OSOAs_LiuLiu . 20
OSOAs_regular . 23
phi_optimize . 25
phi_p . 26
print.SOA . 27
SOAs . 28
SOAs2plus_regular . 30
SOAs_8level . 32
Spattern . 34
util_fastSP . 38

Index 40

SOAs-package Creation of Stratum (aka Strong) Orthogonal Arrays

Description

Creates stratum orthogonal arrays (also known as strong orthogonal arrays).

Details

This package constructs arrays in sel levels from orthogonal arrays in s levels. These are all based
on equations of the type

D = sel−1A1 + ...+ sAel−1 +Ael,

or for s2 levels,
D = sA+B

and for s3 levels,
D = s2A+ sB + C.

The constructions differ in how they obtain the ingredient matrices, and what properties can be
guaranteed for the resulting D. Where a construction function guarantees orthogonal columns for
all matrices D it produces, its name starts with a OSOA, otherwise with SOA.

If optimization is requested (default TRUE), space filling properties of D are improved using a
level permutation algorithm by Weng (2014). This algorithm is applied for improving the phi_p
criterion, which is often a reasonable surrogate for increasing the minimum distance.

SOAs-package 3

Groemping (2023a) describes the constructions by He and Tang (2013, function SOAs), Liu and
Liu (2015, function OSOAs_LiuLiu), He, Cheng and Tang (2018, function SOAs2plus_regular),
Zhou and Tang (2019), Shi and Tang (2020, function SOAs_8level) and Li, Liu and Yang (2021)
in unified notation. The constructions by Zhou and Tang (2019) and Li et al. (2021) are very
close to each other and are both implemented in the three functions OSOAs, OSOAs_hadamard and
OSOAs_regular.

Within the package, available SOA constructions for specific situations can be queried using the
guide functions guide_SOAs and guide_SOAs_from_OA.

Besides the construction functions, properties of the resulting array D can be checked using the
aforementioned function phi_p as well as check functions ocheck, ocheck3 for orthogonality and
soacheck2D, soacheck3D for (O)SOA stratification properties, and Spattern for the space-filling
pattern proposed by Tian and Xu (2022); the implementation of the latter will presumably become
more important than the 2D and 3D check functions eventually.

There is one further construction, maximin distance level expansion (XiaoXuMDLE, MDLEs), that
does not yield stratum (aka strong) orthogonal arrays and is available for comparison only (Xiao
and Xu 2018).

Author(s)

Author: Ulrike Groemping, BHT Berlin. Contributor: Rob Carnell.

References

Groemping, U. (2022). Implementation of the stratification pattern by Tian and Xu via power
coding. Report 2022/03, Reports in Mathematics, Physics and Chemistry, Berliner Hochschule fuer
Technik. http://www1.bht-berlin.de/FB_II/reports/Report-2022-003.pdf

Groemping, U. (2023a). A unifying implementation of stratum (aka strong) orthogonal arrays.
Computational Statistics and Data Analysis 183, 1-28. doi:10.1016/j.csda.2023.107739

Groemping, U. (2023b). Implementating the stratification pattern for space-filling, with dimen-
sion by weight tables. Report 2023/01, Reports in Mathematics, Physics and Chemistry, Berliner
Hochschule fuer Technik. http://www1.bht-berlin.de/FB_II/reports/Report-2023-001.
pdf

He, Y., Cheng, C.S. and Tang, B. (2018). Strong orthogonal arrays of strength two plus. The Annals
of Statistics 46, 457-468. doi:10.1214/17AOS1555

He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer
experiments. Biometrika 100, 254-260. doi:10.1093/biomet/ass065

Li, W., Liu, M.-Q. and Yang, J.-F. (2021). Construction of column-orthogonal strong orthogonal
arrays. Statistical Papers doi:10.1007/s0036202101249w.

Liu, H. and Liu, M.-Q. (2015). Column-orthogonal strong orthogonal arrays and sliced strong
orthogonal arrays. Statistica Sinica 25, 1713-1734. doi:10.5705/ss.2014.106

Shi, L. and Tang, B. (2020). Construction results for strong orthogonal arrays of strength three.
Bernoulli 26, 418-431. doi:10.3150/19BEJ1130

Tian, Y. and Xu, H. (2022). A minimum aberration-type criterion for selecting space-filling designs.
Biometrika 109, 489-501. doi:10.1093/biomet/asab021

http://www1.bht-berlin.de/FB_II/reports/Report-2022-003.pdf
https://doi.org/10.1016/j.csda.2023.107739
http://www1.bht-berlin.de/FB_II/reports/Report-2023-001.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2023-001.pdf
https://doi.org/10.1214/17-AOS1555
https://doi.org/10.1093/biomet/ass065
https://doi.org/10.1007/s00362-021-01249-w
https://doi.org/10.5705/ss.2014.106
https://doi.org/10.3150/19-BEJ1130
https://doi.org/10.1093/biomet/asab021

4 contr.FFbHelmert

Tian, Y. and Xu, H. (2023+). Stratification Pattern Enumerator and its Applications. To appear in J.
Roy. Statist. Soc. Series B.

Weng, J. (2014). Maximin Strong Orthognal Arrays. Master’s thesis at Simon Fraser University
under supervision of Boxin Tang and Jiguo Cao. https://summit.sfu.ca/item/14433

Xiao, Q. and Xu, H. (2018). Construction of Maximin Distance Designs via Level Permutation and
Expansion. Statistica Sinica 28, 1395-1414. doi:10.5705/ss.202016.0423

Zhou, Y.D. and Tang, B. (2019). Column-orthogonal strong orthogonal arrays of strength two plus
and three minus. Biometrika 106, 997-1004. doi:10.1093/biomet/asz043

See Also

Useful links:

• https://github.com/bertcarnell/SOAs

• Report bugs at https://github.com/bertcarnell/SOAs/issues

contr.FFbHelmert Full-factorial-based real-valued contrasts for s^el levels

Description

Full-factorial-based real-valued contrasts for s^el levels

Full-factorial-based polynomial contrasts for s^el levels

Usage

contr.FFbHelmert(n, s, contrasts = TRUE, slowfirst = TRUE)

contr.FFbPoly(n, s, contrasts = TRUE, slowfirst = TRUE)

Arguments

n integer or vector; either an integer number of levels of the factor for which con-
trasts are created, which must be a a power of s; or a factor whose number of
levels is a power of s; or a vector of levels whose number of elements is a power
of s.

s positive integer, at least 2
contrasts logical; must be TRUE
slowfirst logical; default TRUE

Details

The functions implement real-valued full-factorial-based contrasts in the sense of Groemping (2023b)
that can be used instead of the complex-valued contrasts from Tian and Xu (2022), as implemented
in function contr.TianXu. Their main use is the calculation of the stratification pattern (also called
space-filling pattern). Function Spattern uses function contr.FFbHelmert for this purpose, the
internal function Spattern_Poly uses contr.FFbPoly.

https://summit.sfu.ca/item/14433
https://doi.org/10.5705/ss.202016.0423
https://doi.org/10.1093/biomet/asz043
https://github.com/bertcarnell/SOAs
https://github.com/bertcarnell/SOAs/issues

contr.Power 5

Value

contr.FFbHelmert and contr.FFbPoly yield a matrix of real-valued contrasts. That matrix can
be used in function model.matrix or in any statistical modeling functions.

References

Groemping (2023b) Tian and Xu (2022)

Examples

the same n can yield different contrasts for different s
Helmert variant
contr.FFbHelmert(16, 2)
round(contr.FFbHelmert(16, 4), 4)
round(contr.FFbHelmert(16, 16), 4)
Poly variant
contr.FFbHelmert(16, 2)
round(contr.FFbHelmert(16, 4), 4)
round(contr.FFbHelmert(16, 16), 4)

contr.Power A contrast function based on regular factorials for number of levels a
prime or prime power

Description

A contrast function based on regular factorials for number of levels a prime or prime power

Usage

contr.Power(n, s = 2, contrasts = TRUE)

Arguments

n integer or vector; either an integer number of levels of the factor for which con-
trasts are created, which must be a a power of s; or a factor whose number of
levels is a power of s; or a vector of levels whose number of elements is a power
of s.

s integer; prime or prime power
contrasts logical; must be TRUE

Details

The function is a generalization (with slowest first instead of fastest first) of function contr.FrF2
from package DoE.base. It is in this package because it needs Galois field functionality from
package lhs for non-prime s. Its purpose is (was) the calculation of the stratification (or space-
filling) pattern by Tian and Xu (2022), see also Groemping (2022). The package now calculates the
pattern with function contr.TianXu.

6 contr.TianXu

Value

contr.Power yields a matrix of contrasts. It can be used in function model.matrix or anywhere
where factors with the number of levels a power of s are used with contrasts. The exponent for s
is determined from the number of levels.

References

Groemping (2022) Tian and Xu (2022)

Examples

the same n can yield different contrasts for different s
contr.Power(16, 2)
contr.Power(16, 4)

contr.TianXu A complex-valued contrast function for s^el levels based on powers of
the s-th root of the unity

Description

A complex-valued contrast function for s^el levels based on powers of the s-th root of the unity

Usage

contr.TianXu(n, s = 2, contrasts = TRUE)

Arguments

n integer or vector; either an integer number of levels of the factor for which con-
trasts are created, which must be a a power of s; or a factor whose number of
levels is a power of s; or a vector of levels whose number of elements is a power
of s.

s positive integer, at least 2
contrasts logical; must be TRUE

Details

The function implements the complex-valued contrasts from Tian and Xu (2022). Its sole use is the
calculation of the stratification pattern (also called space-filling pattern). However, note that it is
not used in function Spattern, but only in the internal function Spattern_TianXu, which yields
exactly the same results as function Spattern.
The contrasts argument has been kept in order to be prepared in case the model.matrix function
gains the ability to handle complex-valued contrasts.

The Tian and Xu contrasts are full-factorial-based contrasts in the sense of Groemping (2023b).
Function Spattern uses a different type of full-factorial-based contrasts, the full-factorial-based
Helmert contrasts provided in function contr.FFbHelmert.

createSaturated 7

Value

contr.TianXu yields a matrix of complex-valued contrasts. It can therefore NOT be used in func-
tion model.matrix or in statistical modeling functions.

References

Groemping (2023b) Tian and Xu (2022)

Examples

the same n can yield different contrasts for different s
contr.TianXu(16, 2)
contr.TianXu(16, 4)
round(contr.TianXu(16, 16), 4)

createSaturated Function to create a regular saturated strength 2 array

Description

produces an OA(s^k, (s^k-1)/(s-1), s, 2) (Rao-Hamming construction)

Usage

createSaturated(s, k = 2)

Arguments

s the prime or prime power to use
k integer; determines the run size: the resulting array will have s^k runs

Details

For many situations, the saturated fractions produced by this function are not the best choice for
direct use in experimentation, because they heavily confound main effects with interactions.
If not all columns are needed, using the last m columns may yield better results than using the first
m columns.
If possible, stronger OAs from other sources can be used, e.g. from package FrF2 for 2-level factors
or from package DoE.base for factors with more than 2 levels.

Value

createSaturated returns an s^k times (s^k-1)/(s-1) matrix (saturated regular OA with s-level
columns)

Examples

createSaturated(3, k=3) ## 27 x 13 array in 3 levels

8 fastSP

fastSP Functions for fast calculation of stratification pattern according to
Tian and Xu 2023

Description

Functions for fast calculation of stratification pattern according to Tian and Xu 2023

Usage

fastSP(D, s, maxwt = NULL, K = NULL, y0 = NULL, tol = 1e-05)

Arguments

D design with number of levels a power of s

s prime or prime power on which D is based

maxwt integer number; maximum weight for which the pattern is to be calculated

K integer number of summands. Can also be "max" for indicating that all sum-
mands are requested (Theorem 3 of Tian and Xu 2023+). In Theorem 4 of
Tian and Xu (2023+), larger K provide better accuracy. If maxwt=NULL, the de-
fault (NULL) is that all summands are requested (i.e., Theorem 3 of Tian and Xu
2023+). Otherwise, the default is the maximum of maxwt and a default based on
y0 according to a formula by Tian and Xu (2023+) (yields smaller K for smaller
y0).

y0 small number that drives accuracy. The default (NULL) uses 1/s for maximum K
and y0=0.1 for smaller values of K. See the Details section for a discussion of
this parameter.

tol tolerance for checking whether the imaginary part is zero

Details

The function was modified from the code provided with Tian and Xu (2023+).

Per default (maxwt=NULL and K=NULL), or when the user chooses K="max" in spite of specifying a
value for maxwt, fastSP calculates the entire stratification pattern and uses all summands of Tian
and Xu’s (2023+) Equation (4) of their Theorem 3,
with one important modification: y_j is not chosen as the j-th power of the m*el-th complex rooth
of the unity but as that complex number divided by s, as this appears to yield numerically stabler
results. (It neutralizes the large powers of s that arise by multiplying the weighted similarities of
Lemma 1 for obtaining the summands in E(D,y) in formula (3)). Limited experimentation with dif-
ferent values of s showed that this approach did indeed yield reasonably stable results, for example
for the SOA(64,20,8,3) for which the version with unmodified powers of roots of the unity ran into
problems.
It is straightforward to verify that Theorem 3 remains valid for this modified choice of y_j.

It is possible and often advisable to calculate only a smaller number of entries, for saving resources
and also because the later entries are less interesting and less accurate. If the argument maxwt

fastSP 9

is specified and K is left unspecified (K=NULL), K is calculated as the maximum of Tian and Xu’s
(2023+) proposed default for their approximation formula (6), depending on y0, which is set to 0.1,
if also unspecified. Tian and Xu (2023+) recommended to use y0 values between 0.001 and 0.1,
when using formula (6) of Theorem 4.

For obtaining the original behavior of Tian and Xu’s (2023+) implementation of their Theorem 3
(not desirable for larger situations), choose y0=1. Note that y0=1 with a specified maxwt and K=NULL
yields an error, because the default formula for K does not work for y0=1.

Also consider the Note section regarding numerical considerations.

Value

an object of class fastSP, with attributes call, K, y0, and possibly message. The object itself is a
stratification pattern or the first maxwt elements of the stratification pattern (default: all elements).
If K is less than the maximum length of the stratification pattern (Kmax element of attribute K)
the returned values are approximations (more accurate for larger K). If the object has a message
attribute, this attribute indicates which positions of the pattern must be considered as problematic
because the imaginary part was non-zero.

Note

Even the exact pattern (obtained with maximum K) must be considered with caution because of
potential numerical problems. Often, the creation process of a GSOA implies that the first few ele-
ments are zeroes. If this is the case, the degree of inaccuracy may be assessed from these elements.
Furthermore, warnings of non-zero imaginary parts indicate similar problems. If unsure about the
accuracy, it may also be an option to use function Spattern with a small maxwt argument (for
resource reasons) in order to obtain exact values for the first very few entries of the stratification
pattern.aus

References

For full detail, see SOAs-package.

Tian, Y. and Xu, H. (2023+)

Examples

SOA(32,9,8,3) from Shi and Tang (2020)
soa32x9 <- t(matrix(c(7,3,6,2,7,3,6,2,4,0,5,1,4,0,5,1,5,1,4,0,5,1,4,0,6,2,7,3,6,2,7,3,

7,7,2,2,5,5,0,0,6,6,3,3,4,4,1,1,5,5,0,0,7,7,2,2,4,4,1,1,6,6,3,3,
7,5,6,4,3,1,2,0,4,6,5,7,0,2,1,3,7,5,6,4,3,1,2,0,4,6,5,7,0,2,1,3,
7,7,4,4,5,5,6,6,2,2,1,1,0,0,3,3,7,7,4,4,5,5,6,6,2,2,1,1,0,0,3,3,
7,5,6,4,5,7,4,6,6,4,7,5,4,6,5,7,3,1,2,0,1,3,0,2,2,0,3,1,0,2,1,3,
7,1,0,6,3,5,4,2,4,2,3,5,0,6,7,1,5,3,2,4,1,7,6,0,6,0,1,7,2,4,5,3,
7,1,2,4,7,1,2,4,2,4,7,1,2,4,7,1,5,3,0,6,5,3,0,6,0,6,5,3,0,6,5,3,
7,3,2,6,5,1,0,4,4,0,1,5,6,2,3,7,3,7,6,2,1,5,4,0,0,4,5,1,2,6,7,3,
7,1,4,2,3,5,0,6,2,4,1,7,6,0,5,3,3,5,0,6,7,1,4,2,6,0,5,3,2,4,1,7

), nrow=9, byrow = TRUE))

complete pattern according to theorem 3
(y0=1/2 or y0=1 does not make a difference for this small example)
a <- fastSP(soa32x9, 2); round(a,7)

10 guide_SOAs

a <- fastSP(soa32x9, 2, y0=1); round(a,7)

only the first five positions (K=9 calculated and used based on y0=0.1)
not very accurate
a <- fastSP(soa32x9, 2, maxwt=5); round(a,7)
more accurate (K=5 used, based on y0=0.01)
a <- fastSP(soa32x9, 2, maxwt=5, y=0.01); round(a,7)
even more accurate (K=9 used with y0=0.01)
a <- fastSP(soa32x9, 2, maxwt=5, y=0.01, K=9); round(a,7)

example code

guide_SOAs Utility function for inspecting available SOAs for which the user need
not provide an OA

Description

Utility function for inspecting available SOAs for which the user need not provide an OA

Usage

guide_SOAs(s = 2, el = 3, m = NULL, n = NULL, ...)

Arguments

s required (default: 2); prime or prime power on which the SOA is based

el required (default: 3); the power to which s is to be taken, i.e. the SOA will have
columns with s^el levels

m the number of columns needed (optional)

n the maximum number of runs that are acceptable (optional);
should be a multiple of s^el; must not be smaller than m+1, if m is specified

... currently unused

Details

The function provides the possible creation variants of an SOA that has m columns in s^el levels in
up to n runs. It is permitted to specify m OR n only; in that case the function provides constructions
with the smallest n or the largest m, respectively.
If both m and n are omitted, the function returns the smallest possible (O)SOA constructions for
s^el levels that can be obtained without providing an OA.

Value

The function returns a data frame, each row of which contains a possibility; if no SOAs exist, the
data.frame has zero rows. There is example code for constructing the SOA. Code details must be
adjusted by the user (see the documentation of the respective functions). #’

guide_SOAs_from_OA 11

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a)
He, Cheng and Tang (2018)
Li, Liu and Yang (2021)
Shi and Tang (2020)
Zhou and Tang (2019)

See Also

guide_SOAs_from_OA

Examples

guide_SOAs
There is a Zhou and Tang type SOA with 4-level columns in 8 runs
guide_SOAs(2, 2, n=8)
There are no SOAs with 8-level columns in 8 runs
guide_SOAs(2, 3, n=8)
What SOAs based on s=2 in s^3 levels with 7 columns
can be construct without providing an OA?
guide_SOAs(2, 3, m=7)
pick the Shi and Tang family 3 design
myST_3plus <- SOAs_8level(n=32, m=7, constr='ShiTang_alphabeta')
Note that the design has orthogonal columns and strength 3+,
i.e., very good balance properties.

guide_SOAs_from_OA Utility function for inspecting SOAs obtainable from an OA

Description

Utility function for inspecting SOAs obtainable from an OA

Usage

guide_SOAs_from_OA(s, nOA, mOA, tOA, el = tOA, ...)

12 guide_SOAs_from_OA

Arguments

s required; the unique number of levels of the columns of a given OA (need not
be prime or prime power)

nOA required; the number of runs of the OA

mOA required; the number of columns of the OA

tOA required; the strength of the OA; strengths larger than 5 are reduced to 5; el must
not be larger than the (reduced) strength, except for tOA=2 with el=3, which is
supported by the LLY algorithm

el the power to which s is to be taken, i.e. the SOA will have columns with s^el
levels; default: tOA.
except for tOA=2 and el=3, el can be chosen smaller than tOA, but not larger. If
el is smaller than tOA, tOA is internally reduced before working out the possi-
bilities.

... currently unused

Details

The function provides the possible creation variants of an SOA from a strength tOA OA with mOA
s-level columns in nOA runs, for an SOA that has columns in s^el levels. Note that the SOA may
have nOA runs or s*nOA runs, depending on the construction.

Value

The function returns a data frame, each row of which contains a possibility. There is example code
for constructing the SOA. The code assumes that a given OA has the name OA; this can of course be
modified by the user. Further code details can also be adjusted by the user (see the documentation
of the respective functions).

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a)
He and Tang (2013)
He, Cheng and Tang (2018)
Liu and Liu (2015)
Li, Liu and Yang (2021)
Shi and Tang (2020)
Zhou and Tang (2019)

See Also

guide_SOAs

mbound_LiuLiu 13

Examples

guide_SOAs_from_OA
there is an OA(81, 3^10, 3) (L81.3.10 in package DoE.base)
inspect what can be done with it:
guide_SOAs_from_OA(s=3, mOA=10, nOA=81, tOA=3)
the output shows that a strength 3 OSOA
with 4 columns of 27 levels each can be obtained in 81 runs
and provides the necessary code (replace OA with L81.3.10)
optimize=FALSE reduces example run time
OSOAs_LiuLiu(L81.3.10, t=3, optimize=FALSE)
or that an SOA with 9 non-orthogonal columns can be obtained
in the same number of runs
SOAs(L81.3.10, t=3)

mbound_LiuLiu bound for number of columns for LiuLiu OSOAs

Description

bound for number of columns for LiuLiu OSOAs

Usage

mbound_LiuLiu(moa, t)

Arguments

moa number of oa columns

t strength used in the construction in function OSOAs_LiuLiu (it is assumed that
the oa used has at least that strength)

Value

the maximum number of columns that can be obtained by the command OSOAs_LiuLiu(oa, t=t)
where oa has at least strength t and consists of moa columns

Author(s)

Ulrike Groemping

References

#’ For full detail, see SOAs-package.

Liu and Liu 2015

14 MDLEs

Examples

moa is the number of columns of an oa
moa <- rep(seq(4,40),3)
t is the strength used in the construction
the oa must have at least this strength
t <- rep(2:4, each=37)
numbers of columns for the combination
mbounds <- mapply(mbound_LiuLiu, moa, t)
depending on the number of levels
the number of runs can be excessive
for larger values of moa with larger t!
t=3 and t=4 have the same number of columns, except for moa=4*j+3
plot(moa, mbounds, pch=t, col=t)

MDLEs Function to create maximin distance level expanded arrays

Description

Maximin distance level expansion similar to Xiao and Xu is implemented, using an optimization
algorithm that is less demanding than the TA algorithm of Xiao and Xu

Usage

MDLEs(
oa,
ell,
noptim.rounds = 1,
optimize = TRUE,
noptim.oa = 1,
dmethod = "manhattan",
p = 50

)

Arguments

oa matrix or data.frame that contains an ingoing symmetric OA. Levels must be
denoted as 0 to s-1 or as 1 to s.

ell the multiplier for each number of levels

noptim.rounds the number of optimization rounds; optimization may take very long, therefore
the default is 1, although more rounds are beneficial.

optimize logical: if FALSE, suppress optimization of expansion levels

noptim.oa integer: number of optimization rounds applied to initial oa itself before starting
expansion

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

ocheck 15

Details

The ingoing oa is possibly optimized for space-filling, using function phi_optimize with noptim.oa
optimization rounds. The expansions themselves are again optimized for improving phi_p, using
an algorithm which is a variant of Weng (2014), instead of the more powerful but also much more
demanding algorithm proposed by Xiao and Xu.

Value

A matrix of class MDLE with attributes

phi_p the phi_p value that was achieved

type MDLE

optimized logical: same as the input parameter

call the call that produced the matrix

permpick matrix of lists of length s with elements from 0 to ell-1;
matrix element (i,j) contains the sequence of replacements used in function DcFromDp for
constructing the level expansion of the ith level in the jth column

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Weng (2014)
Xiao and Xu (2018)

Examples

dim(aus <- MDLEs(DoE.base::L16.4.5, 2, noptim.rounds = 1))
permpicks <- attr(aus, "permpick")
for people interested in internal workings:
the code below produces the same matrix as MDLEs
SOAs:::DcFromDp(L16.4.5-1, 4,2, lapply(1:5, function(obj) permpicks[,obj]))

ocheck functions to evaluate low order projection properties of (O)SOAs

Description

ocheck and ocheck3 evaluate pairwise or 3-orthogonality of columns, count_npairs evaluates the
number of level pairs in 2D projections, count_nallpairs calculates corresponding total numbers
of pairs.

16 ocheck

Usage

ocheck(D, verbose = FALSE)

ocheck3(D, verbose = FALSE)

count_npairs(D, minn = 1)

count_nallpairs(ns)

Arguments

D a matrix with factor levels or an object of class SOA;
factor levels can start with 0 or with 1, and need to be consecutively numbered

verbose logical; if TRUE, additional information is printed (table of correlations)
minn small integer number; the function counts pairs that are covered at least minn

times
ns vector of numbers of levels for each column

Value

Functions ocheck and ocheck3 return a logical.

Functions count_npairs returns a vector of counts for level combinations covered in factor pairs
(in the order of the columns of DoE.base:::nchoosek(ncol(D),2)) for the array in D,
function count_nallpairs provides the total number of level combinations for designs with num-
bers of levels given in ns (and thus can be used to obtain a denominator for count_npairs).

Author(s)

Ulrike Groemping

Examples

#' ## Shi and Tang strength 3+ construction in 7 8-level factors for 32 runs
D <- SOAs_8level(32, optimize=FALSE)
is an OSOA
ocheck(D)

an OSOA of strength 3 with 3-orthogonality
4 columns in 27 levels each
second order model matrix

D_o <- OSOAs_LiuLiu(DoE.base::L81.3.10, optimize=FALSE)
ocheck3(D_o)

benefit of 3-orthogonality for second order linear models
colnames(D_o) <- paste0("X", 1:4)
y <- stats::rnorm(81)
mylm <- stats::lm(y~(X1+X2+X3+X4)^2 + I(X1^2)+I(X2^2)+I(X3^2)+I(X4^2),

data=as.data.frame(scale(D_o, scale=FALSE)))
crossprod(stats::model.matrix(mylm))

OSOAs 17

OSOAs Function to create an OSOA from an OA

Description

An OSOA in ns runs of strength 2* (s^3 levels) or 2+ (s^2 levels) is created from an OA(n,m,s,2).

Usage

OSOAs(
oa,
el = 3,
m = NULL,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

oa matrix or data.frame that contains an ingoing symmetric OA. Levels must be
denoted as 0 to s-1 or as 1 to s.

el the exponent of the number of levels, el=3 yields a strength 2* OSOA in s^3
levels, el=2 a strength 2+ OSOA in s^2 levels

m the desired number of columns of the resulting array; odd values of m will be
reduced by one, so specify the next largest even m, if you need an odd number of
columns (the function will do so, if possible; if m=NULL, the maximum possible
value is used.

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical: should space filling be optimized by level permutations?

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The function implements the algorithms proposed by Zhou and Tang 2018 (s^2 levels) or Li, Liu
and Yang 2021 (s^3 levels). Both are enhanced with the modification for matrix A by Groemping
2022. Level permutations are optimized using an adaptation of the algorithm by Weng (2014).

Suitable OAs for argument oa can e.g. be constructed with OA creation functions from package lhs
or can be obtained from arrays listed in R package DoE.base

18 OSOAs

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

Examples

run with optimization for actual use!

54 runs with seven 9-level columns
OSOAs(DoE.base::L18[,3:8], el=2, optimize=FALSE)

54 runs with six 27-level columns
OSOAs(DoE.base::L18[,3:8], el=3, optimize=FALSE)

81 runs with four 9-level columns
OSOAs(DoE.base::L27.3.4, el=2, optimize=FALSE)
An OA with 9-level factors (L81.9.10)
has complete balance in 2D,
however does not achieve 3D projection for
all four collapsed triples
It is up to the user to decide what is more important.
I would go for the OA.

81 runs with four 27-level columns
OSOAs(DoE.base::L27.3.4, el=3, optimize=FALSE)

OSOAs_hadamard 19

OSOAs_hadamard function to create a strength 3 OSOA with 8-level columns or a
strength 3- OSOA with 4-level columns from a Hadamard matrix

Description

A Hadamard matrix in k runs is used for creating an OSOA in n=2k runs for at most m=k-2 columns
(8-level) or m=k-1 columns (4-level).

Usage

OSOAs_hadamard(
m = NULL,
n = NULL,
el = 3,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

m the number of columns to be created; if n is also given, m must be compatible
with it; at present, m can be at most 98.

n the number of runs to be created; n must be a multiple of 8 and can (at present)
be at most 200; if m is also given, n must be compatible with it.

el exponent for 2, can be 2 or 3: the OSOA will have columns with 2^el (4 or 8)
levels

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical: should space filling be optimized by level permutations?

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

At least one of m or n must be provided. For el=2, Zhou and Tang (2019) strength 3- designs are
created, for el=3 strength 3 designs by Li, Liu and Yang (2021).
Li et al.’s creation of the matrix A has been enhanced by using a column specific fold-over, which
is beneficial for the space-filling properties (see Groemping 2022).

20 OSOAs_LiuLiu

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

Examples

dim(OSOAs_hadamard(9, optimize=FALSE)) ## 9 8-level factors in 24 runs
dim(OSOAs_hadamard(n=16, optimize=FALSE)) ## 6 8-level factors in 16 runs
OSOAs_hadamard(n=24, m=6, optimize=FALSE) ## 6 8-level factors in 24 runs

(though 10 would be possible)
dim(OSOAs_hadamard(m=35, optimize=FALSE)) ## 35 8-level factors in 80 runs

OSOAs_LiuLiu Function to create OSOAs of strengths 2, 3, or 4 from an OA

Description

Creates OSOAs from an OA according to the construction by Liu and Liu (2015). Strengths 2 to 4
are covered. Strengths 3 and 4 guarantee 3-orthogonality.

OSOAs_LiuLiu 21

Usage

OSOAs_LiuLiu(
oa,
t = NULL,
m = NULL,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

oa matrix or data.frame; a symmetric orthogonal array of strength at least t

t the requested strength of the OSOA

m the requested number of columns of the OSOA (at most mbound_LiuLiu(ncol(oa),
t)).

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical: should space filling be optimized by level permutations?

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The number of columns goes down dramatically with the requested strength. However, the strength
3 or 4 arrays may be worthwhile, because they guarantee 3-orthogonality, which implies that (quan-
titative) linear models with main effects and second order effects can be robustly estimated.

Optimization is less successful for this construction of OSOAs; for small arrays, the level permuta-
tions make (almost) no difference.

Function mbound_LiuLiu(moa, t) calculates the number of columns that can be obtained from a
strength t OA with moa columns (if such an array exists, the function does not check that).

Ingoing arrays can be obtained from oa-generating functions of R package lhs like createBoseBush,
or from OAs in R package DoE.base, or from 2-level designs created with R package FrF2 (see
example section).

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

22 OSOAs_LiuLiu

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Liu and Liu (2015)
Weng (2014)

Examples

strength 2, very small (four 9-level columns in 9 runs)
OSOA9 <- OSOAs_LiuLiu(DoE.base::L9.3.4)

strength 3, from a Plackett-Burman design of FrF2
10 8-level columns in 40 runs with OSOA strength 3
oa <- suppressWarnings(FrF2::pb(40)[,c(1:19,39)])
columns 1 to 19 and 39 together are the largest possible strength 3 set
OSOA40 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 3, 8 levels
optimize would improve phi_p, but suppressed for saving run time

9 8-level columns in 40 runs with OSOA strength 3
oa <- FrF2::pb(40,19)
9 columns would be obtained without the final column in oa
mbound_LiuLiu(19, t=3) ## example for which q=3
mbound_LiuLiu(19, t=4) ## t=3 has one more column than t=4
OSOA40_2 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 3, 8 levels
optimize would improve phi_p, but suppressed for saving run time

starting from a strength 4 OA
oa <- FrF2::FrF2(64,8)
four 16 level columns in 64 runs with OSOA strength 4
OSOA64 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 4, 16 levels

reducing the strength to 3 does not increase the number of columns
mbound_LiuLiu(8, t=3)
reducing the strength to 2 doubles the number of columns
mbound_LiuLiu(8, t=2)
eight 4-level columns in 64 runs with OSOA strength 2
OSOA64_2 <- OSOAs_LiuLiu(oa, t=2, optimize=FALSE)
fulfills the 2D strength 2 property
soacheck2D(OSOA64_2, s=2, el=2, t=2)

OSOAs_regular 23

fulfills also the 3D strength 3 property
soacheck3D(OSOA64_2, s=2, el=2, t=3)
fulfills also the 4D strength 4 property
DoE.base::GWLP(OSOA64/2)
but not the 3D strength 4 property
soacheck3D(OSOA64_2, s=2, el=2, t=4)
and not the 2D 4x2 and 2x4 stratification balance
soacheck2D(OSOA64_2, s=2, el=2, t=3)
six 36-level columns in 72 runs with OSOA strength 2
oa <- DoE.base::L72.2.5.3.3.4.1.6.7[,10:16]
OSOA72 <- OSOAs_LiuLiu(oa, t=2, optimize=FALSE)

OSOAs_regular Function to create an OSOA in s^2 or s^3 levels and s^k runs from a
basic number of levels s and a power k

Description

The OSOA in s^k runs accommodates at most m=(s^(k-1)-1)/(s-1) columns in s^2 levels or m’=2*floor(m/2)
columns in s^3 levels.

Usage

OSOAs_regular(
s,
k,
el = 3,
m = NULL,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

s the prime or prime power to use (do not use for s=2, because other method is
better); the resulting array will have pairwise orthogonal columns in s^t levels

k integer >=3; determines the run size: the resulting array will have s^k runs

el 2 or 3; the exponent of the number of levels, el=3 yields a strength 2* or 3
OSOA in s^3 levels, el=2 a strength 2+ or 3- OSOA in s^2 levels

m the desired number of columns of the resulting array; for el=3, odd values of
m will be reduced by one, so specify the next largest even m, if you need an
odd number of columns (the function will do so, if possible); if m=NULL, the
maximum possible value is used. This is at most (s^(k-1)-1)/(s-1), or one less if
this is odd and el=3.

24 OSOAs_regular

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical: should space filling be optimized by level permutations?

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The function implements the algorithms proposed by Zhou and Tang 2018 (s^2 levels) or Li, Liu
and Yang 2021 (s^3 levels), enhanced with the modification for matrix A by Groemping (2023a).
Level permutations are optimized using an adaptation of the algorithm by Weng (2014).

If m is specified, the function uses the last m columns of a saturated OA produced by function
createSaturated(s, k-1).
If m is small enough that a resolution IV / strength 3 OA for s levels in s^(k-1) runs exists, function
OSOAs should be used with such an OA (which can be obtained from package FrF2 for s=2 or from
package DoE.base for s>2). For s=2, function OSOAs_hadamard may also be a better choice than
OSOAs_regular for up to 192 runs.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package. Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

phi_optimize 25

Examples

13 columns in 9 levels each
OSOAs_regular(3, 4, el=2, optimize=FALSE) ## 13 columns, phi_p about 0.117
optimizing level permutations typically improves phi_p a lot
OSOAs_regular(3, 4, el=2) ## 13 columns, phi_p typically below 0.055

phi_optimize function to optimize the phi_p value of an array by level permutation

Description

takes an n x m array and returns an n x m array with improved phi_p value (if possible)

Usage

phi_optimize(
D,
noptim.rounds = 1,
noptim.repeats = 1,
dmethod = "manhattan",
p = 50

)

Arguments

D numeric matrix or data.frame with numeric columns, n x m. A symmetric array
(e.g. an OA) with nl levels for each columns. Levels must be coded as 0 to nl
- 1 or as 1 to nl. levels from

noptim.rounds number of rounds in the Weng algorithm
noptim.repeats number of independent repeats of the Weng algorithm
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
p p for phi_p (the larger, the closer to maximin distance)

Details

The function uses the algorithm proposed by Weng (2014) for SOA optimization:

It starts with a random permutation of column levels.

Initially, individual columns are randomly permuted (m permuted matrices, called one-neighbours),
and the best permutation w.r.t. the phi_p value (manhattan distance) is is made the current opti-
mum. This continues, until the current optimum is not improved by a set of randomly drawn one-
neighbours.
Subsequently, pairs of columns are randomly permuted (choose(m,2) permuted matrices, called
two-neighbours). If the current optimum can be improved or the number of optimization rounds
has not yet been exhausted, a new round with one-neighbours is started with the current optimum.
Otherwise, the current optimum is returned, or an independent repeat is initiated (if requested).

Limited experience suggests that an increase of noptim.rounds from the default 1 is often helpful,
whereas an increase of noptim.repeats did not yield as much improvement.

26 phi_p

Value

an n x m matrix

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Weng (2014)

Examples

oa <- lhs::createBoseBush(8,16)
print(phi_p(oa, dmethod="manhattan"))
oa_optimized <- phi_optimize(oa)
print(phi_p(oa_optimized, dmethod="manhattan"))

phi_p Functions to evaluate space filling of an array

Description

phi_p calculates the discrepancy

phi_p calculates the discrepancy

Usage

phi_p(D, dmethod = "manhattan", p = 50)

mindist(D, dmethod = "manhattan")

phi_p(D, dmethod = "manhattan", p = 50)

Arguments

D an array or an object of class SOA or MDLE

dmethod the distance to use, "manhattan" (default) or "euclidean"

p the value for p to use in the formula for phi_p

Details

Small values of phi_p tend to be associated with good performance on the maximin distance crite-
rion, i.e. with a larger minimum distance.

small values of phi_p are associated with good performance on the maximin distance criterion

print.SOA 27

Value

both functions return a number
a number

Author(s)

Ulrike Groemping

Examples

A <- DoE.base::L25.5.6 ## levels 1:5 for each factor
phi_p(A)
mindist(A) # 5
A2 <- phi_optimize(A)
phi_p(A2) ## improved
mindist(A2) ## 6, improved
A <- DoE.base::L16.4.5 ## levels 1:4 for each factor
phi_p(A)
phi_p(A, dmethod="euclidean")
A2 <- A
A2[,4] <- c(2,4,3,1)[A[,4]]
phi_p(A2)
Not run:

A2 has fewer minimal distances
par(mfrow=c(2,1))
hist(dist(A), xlim=c(2,6), ylim=c(0,40))
hist(dist(A2), xlim=c(2,6), ylim=c(0,40))

End(Not run)

print.SOA Print Methods

Description

Print Methods

Usage

S3 method for class 'SOA'
print(x, ...)

S3 method for class 'MDLE'
print(x, ...)

S3 method for class 'Spattern'
print(x, ...)

S3 method for class 'dim_wt_tab'
print(x, ...)

28 SOAs

Arguments

x object to be printed (SOA, OSOA, MDLE, Spattern)

... further arguments for function print

Value

no value is returned

Examples

myOSOA <- OSOAs_regular(s=3, k=3, optimize=FALSE)
myOSOA
str(myOSOA) ## structure for comparison
Spat <- Spattern(myOSOA, s=3)
dim_wt_tab(Spat) ## print method prints NAs as .
print(dim_wt_tab(Spat), na.print=" ")

SOAs function to create SOAs of strength t with the GOA construction by He
and Tang.

Description

takes an OA(n,m,s,t) and creates an SOA(n,m’,s^t’,t’) with t’<=t.

Usage

SOAs(
oa,
t = 3,
m = NULL,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

oa matrix or data.frame that contains an ingoing symmetric OA. Levels must be
denoted as 0 to s-1 or as 1 to s.

t the strength the SOA should have, can be 2, 3, 4, or 5. Must not be larger than
the strength of oa, but can be smaller. The resulting SOA will have s^t levels

m the requested number of columns (see details for permitted numbers of columns)

noptim.rounds the number of optimization rounds for each independent restart

SOAs 29

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical, default TRUE; if FALSE, suppresses optimization

dmethod method for the calculation of phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The resulting SOA will have at most m’ columns in s^t levels and will be of strength t. m’(m,
t) is a function of the number of columns of oa (denoted as m) and the strength t: m’(m,2)=m,
m’(m,3)=m-1, m’(m,4)=floor(m/2), m’(m,5)=floor((m-1)/2).

Suitable OAs for argument oa can e.g. be constructed with OA creation functions from package lhs
or can be obtained from arrays listed in R package DoE.base.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

He and Tang (2013)
Weng (2014)

Examples

aus <- SOAs(DoE.base::L27.3.4, optimize=FALSE) ## t=3 is the default
dim(aus)
soacheck2D(aus, s=3, el=3) ## check for 2*
soacheck3D(aus, s=3, el=3) ## check for 3

aus2 <- SOAs(DoE.base::L27.3.4, t=2, optimize=FALSE)

30 SOAs2plus_regular

t can be smaller than the array strength
--> more columns with fewer levels each
dim(aus2)
soacheck2D(aus2, s=3, el=2, t=2) # check for 2
soacheck3D(aus2, s=3, el=2) # t=3 is the default (check for 3-)

SOAs2plus_regular function to create SOAs of strength 2+ from regular s-level designs

Description

creates an array in s^k runs with columns in s^2 levels for prime or prime power s

Usage

SOAs2plus_regular(
s,
k,
m = NULL,
orth = TRUE,
old = FALSE,
noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

s prime or prime power

k array will have n=s^k runs; for s=2, k>=4 is needed, for s>2, k>=3 is sufficient

m optional integer: number of columns requested; if NULL, the maximum possible
number of columns is created, which is (s^k-1)/(s-1) - ((s-1)^k-1)/(s-2) for s>2
and s^k-s^k1 - s^(k-k1) + 2, with k1=floor(k/2), for s=2; specifying a smaller
m is beneficial not only for run time but also for possibly achieving a column-
orthogonal array (see Details section)

orth logical: if FALSE, suppresses attempts for orthogonal columns and selects the
first permissible column for each column of B (see Details section)

old logical, relevant for orth=TRUE only: if TRUE, limits possible columns for B to
the columns not eligible for A (instead of the columns not used in A); should
only be used for reproducing designs created by version 1.1 or earlier

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

SOAs2plus_regular 31

optimize logical: should optimization be applied? default TRUE

dmethod method for the distance in phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The construction is by He, Cheng and Tang (2018), Prop.1 (C2) / Theorem 2 for s=2 and Theorem
4 for s>2.
B is chosen as an OA of strength 2, if possible, which yields orthogonal columns according to Zhou
and Tang (2019). This is implemented using a matching algorithm for bipartite graphs from package
igraph; the smaller m, the more likely that orthogonality can be achieved. However, strength 2+
SOAs are not usually advisable for m small enough that a strength 3 OA exists.
Optimization according to Weng has been added (separate level permutations in columns of A and
B, noptim.rounds times). Limited tests suggest that a single round (noptim.rounds=1) often does
a very good job (e.g. for s=2 and k=4), and further rounds do not yield too much improvement; there
are also cases (e.g. s=5 with k=3), for which the unoptimized array has a better phi_p than what can
be achieved by most optimization attempts from a random start.

The search for orthogonal columns can take a long time for larger arrays, even without optimization.
If this is prohibitive (or not considered valuable), orth=FALSE causes the function to create the
matrix B for equation D=2A+B with less computational effort.
The subsequent optimization, if not switched off, is of the same complexity, regardless of the value
for orth. Its duration heavily depends on the number of optimization steps that are needed before
the algorithm stops. This has not been systematically investigated; cases for which the total run
time with optimization is shorter for orth=TRUE than for orth=FALSE have been observed.

With package version 1.2, the creation of SOAs has changed: Up to version 1.1, the columns of B
were chosen only from those columns that were not eligible for A, whereas the new version chooses
them from those columns that are not used for A. This increases the chance to achieve geometrically
orthogonal columns.
Users who want to reproduce a design from an earlier version can use argument old.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

32 SOAs_8level

Note

Strength 2+ SOAs can accommodate a large number of factors with reasonable stratified balance
behavior. Note that their use is not usually advisable for m small enough that a strength 3 OA with
s^2 level factors exists.

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a) He, Cheng and Tang (2018)
Weng (2014)
Zhou and Tang (2019)

Examples

unoptimized OSOA with 8 16-level columns in 64 runs
(maximum possible number of columns)
plan64 <- SOAs2plus_regular(4, 3, optimize=FALSE)
ocheck(plan64) ## the array has orthogonal columns

optimized SOA with 20 9-level columns in 81 runs
(up to 25 columns are possible)
plan <- SOAs2plus_regular(3, 4, 20)
many column pairs have only 27 level pairs covered
count_npairs(plan)
an OA would exist for 10 9-level factors (DoE.base::L81.9.10)
it would cover all pairs
(SOAs are not for situations for which pair coverage
is of primary interest)

SOAs_8level Function to create 8-level SOAs according to Shi and Tang 2020

Description

creates strength 3 or 3+ SOAs with 8-level factors in 2^k runs, k at least 4. These SOAs have at
least some more balance than guaranteed by strength 3.

Usage

SOAs_8level(
n,
m = NULL,
constr = "ShiTang_alphabeta",

SOAs_8level 33

noptim.rounds = 1,
noptim.repeats = 1,
optimize = TRUE,
dmethod = "manhattan",
p = 50

)

Arguments

n run size of the SOA; power of 2, at least 16

m number of colums; at most 5n/16 for constr="ShiTang_alpha" (exception:
only 9 for n=32), at most n/4 for constr="ShiTang_alphabeta"; for m=NULL,
defaults are m=5n/16 and m=n/4-1, respectively; the latter yields strength 3+.

constr construction method. Must be one of "ShiTang_alphabeta", "ShiTang_alpha".
See Details section

noptim.rounds the number of optimization rounds for each independent restart

noptim.repeats the number of independent restarts of optimizations with noptim.rounds rounds
each

optimize logical: should space filling be optimized by level permutations?

dmethod distance method for phi_p, "manhattan" (default) or "euclidean"

p p for phi_p (the larger, the closer to maximin distance)

Details

The construction is implemented as described in Groemping (2023a).

The 8-level SOAs created by this construction have strength 3 and at least the additional property
alpha, which means that all pairs of columns achieve perfect 4x4 balance, if consecutive level pairs
(01, 23, 45, 67) are collapsed.

The "ShiTang_alphabeta" construction additionally yields perfect 4x2x2 balance, if one column is
collapsed to 4 levels, while two further columns are collapsed to 2 levels (0123 vs 4567). with m
= n/4 columns, the "ShiTang_alphabeta" construction has a single pair of correlated columns, all
other columns are uncorrelated, due to a modification of Shi and Tang’s column allocation that was
proposed in Groemping (2023a).

For m <= n/4 - 1, the "ShiTang_alphabeta" construction also yields perfect balance for 8x2 pro-
jections in 2D (i.e. if one original column with another column collapsed to two levels). Thus, it
yields all strength 4 properties in 2D and 3D, which is called strength 3+. Furthermore, Groemping
(2023a) proposed an improved choice of columns for matrix C that implies orthogonal columns in
this case.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using
function attributes, or individual attributes can be accessed using function attr. These are the
attributes:

type the type of array (SOA or OSOA)

34 Spattern

strength character string that gives the strength

phi_p the phi_p value (smaller=better)

optimized logical indicating whether optimization was applied

permpick matrix that lists the id numbers of the permutations used

perms2pickfrom optional element, when optimization was conducted: the overall permutation list
to which the numbers in permlist refer

call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.

Groemping (2023a)
Shi and Tang (2020)
Weng (2014)

Examples

use with optimization for actually using such designs
n/4 - 1 = 7 columns, strength 3+
SOAs_8level(32, optimize=FALSE)

n/4 = 8 columns, strength 3 with alpha and beta
SOAs_8level(32, m=8, optimize=FALSE)

9 columns (special case n=32), strength 3 with alpha
SOAs_8level(32, constr="ShiTang_alpha", optimize=FALSE)

5*n/16 = 5 columns, strength 3 with alpha
SOAs_8level(16, constr="ShiTang_alpha", optimize=FALSE)

Spattern functions to evaluate stratification properties of (O)SOAs and GSOAs

Description

soacheck2D and soacheck3D evaluate 2D and 3D projections, Spattern calculates the stratifica-
tion pattern by Tian and Xu (2022), and dim_wt_tab extracts and formats the dim_wt_tab attribute
of Spattern.

Spattern 35

Usage

Spattern(D, s, maxwt = 4, maxdim = NULL, verbose = FALSE, ...)

dim_wt_tab(pat, dimlim = NULL, wtlim = NULL, ...)

soacheck2D(D, s = 3, el = 3, t = 3, verbose = FALSE)

soacheck3D(D, s = 3, el = 3, t = 3, verbose = FALSE)

Arguments

D a matrix with factor levels or an object of class SOA or a data.frame object with
numeric columns.
Functions soacheck2D and soacheck3D require levels that are consecutively
numbered (starting with 0 or 1).
Function Spattern also works, if all columns of D have the same number of
unique numeric values; the function will code them using power contrasts.

s the prime or prime power according to which the array is checked

maxwt maximum weight to be considered for the pattern (default: 4; see Details);
if the specified limit is larger than maxdim*el, it is reduced accordingly (where
el is such that s^el is the number of levels)

maxdim maximum dimension to be considered for the pattern (default: NULL implies that
maxdim=min(maxwt, ncol(D)); see also Details);
if the specified limit is larger than m=ncol(D), it is reduced to m

verbose logical; if TRUE, additional information is printed (for Spattern, status informa-
tion during run time; for the SOAcheck... functions, confounded pair or triple
projections with A2 or A3, respectively, or table of correlations)

... currently not used

pat an object of class Spattern

dimlim integer; limits the returned dimension rows to the rows from 1 up to dimlim; the
bottom margin continues to include all dimensions that were used in calculating
pat

wtlim integer; limits the returned weight columns to the columns from 1 up to wtlim;
the right margin continues to include all weights that were used in calculating
pat

el the exponent so that the number of levels of the array is s^el (if s is not NULL)

t the strength for which to look (2, 3, or 4), equal to the sum of the exponents in
the stratification dimensions; for example, soacheck2D considers
sxs 2D projections with t=2,
s^2xs and sxs^2 projections with t=3,
and s^3xs, s^2xs^2 and sxs^3 projections with t=4.
If t=4 and el=2, property gamma (s^3 x s and s x s^3) is obviously impossible
and will not be part of the checks.

36 Spattern

Details

Function Spattern calculates the stratification pattern or S pattern as proposed in Tian and Xu
(2022) (under the name space-filling pattern); the details and the implementation in this function
are described in Groemping (2023b); the function uses the full-factorial-based Helmert contrasts.
Position j in the S pattern shows the imbalance when considering s^j strata. j is also called the
(total) weight. j=1 can occur for an individual column only. j=2 can be obtained either for an s^2
level version of an individual column or for the crossing of s^1 level versions of two columns, and
so forth.

Obtaining the entire S pattern can be computationally demanding. The arguments maxwt and
maxdim limit the effort (choose NULL for no limit):
maxwt gives an upper limit for the weight j of the previous paragraph; if NULL, maxwt is set to
maxdim*el.
maxdim limits the number of columns that are considered in combination.
When using a non-null maxdim, pattern entries for j larger than maxdim can be smaller than if one
would not have limited the dimension. Otherwise, dimensionality is unlimited, which is equivalent
to specifying maxdim as the minimum of maxwt and ncol(D).

Spattern with maxdim=2 and maxwt=t can be used as an alternative to soacheck2D,
and analogously Spattern with maxdim=2 and maxwt=t can be used as an alternative to soacheck3D.

An Spattern object object can be post-processed with function dim_wt_tab. That function splits
the S pattern into contributions from effect column groups of different dimensions, arranged with a
row for each dimension and a column for each weight. If Spattern was called with maxdim=NULL
and maxwt=NULL, the output object shows the GWLP in the right margin and the S pattern in the
bottom margin. If Spattern was called with relevant restrictions on dimensions (maxdim, default
4) and/or weights (maxwt, default 4), sums in the margins can be smaller than they would be for
unconstrained dimension and weights.

Functions soacheck2D and soacheck3D were available before function Spattern; many of their
use cases can now be handled with Spattern instead. The functions are often fast to yield a FALSE
outcome, but can be very slow to yield a TRUE outcome for larger designs.
The functions inspect 2D and 3D stratification, respectively. Each column must have s^el levels. t
specifies the degree of balance the functions are asked to look for.

Function soacheck2D,

• with el=t=2, looks for strength 2 conditions (s^2 levels, sxs balance),
• with el=2, t=3, looks for strength 2+ / 3- conditions (s^2 levels, s^2xs balance),
• with el=t=3, looks for strength 2* / 3 conditions (s^3 levels, s^2xs balance).
• with el=2, t=4, looks for the enhanced strength 2+ / 3- property alpha (s^2 levels, s^2xs^2

balance).
• and with el=3, t=4, looks for strength 3+ / 4 conditions (s^3 levels, s^3xs and s^2xs^2 balance).

Function soacheck3D,

• with el=2, t=3, looks for strength 3- conditions (s^2 levels, sxsxs balance),
• with el=t=3, looks for strength 3 conditions (s^3 levels, sxsxs balance),
• and with el=3, t=4, looks for strength 3+ / 4 conditions (s^3 levels, s^2xsxs balance).

If verbose=TRUE, the functions print the pairs or triples that violate the projection requirements for
2D or 3D.

Spattern 37

Value

Function Spattern returns an object of class Spattern that is a named vector with attributes:
The attribute call holds the function call (and thus documents, e.g., limits set on dimension and/or
weight).
The attribute dim_wt_tab holds a table of contributions split out by dimension (rows) and weights
(columns), which has class dim_wt_tab and the further attribute Spattern-class.
Function dim_wt_tab returns the dim_wt_tab attribute of an object of class Spattern; note that
the object contains NA values for combinations of dimension and weight that cannot occur.

Function dim_wt_tab postprocesses an Spattern object and produces a table that holds the S
pattern entries separated by the dimension of the contributing effect column group (rows) and the
weight of the effect column micro group (columns). The margin shows row and column sums (see
Details section for caveats).

References

For full detail, see SOAs-package.

Groemping (2023a)
Groemping (2023b)
He and Tang (2013)
Shi and Tang (2020)
Tian and Xu (2022)

Examples

nullcase <- matrix(0:7, nrow=8, ncol=4)
soacheck2D(nullcase, s=2)
soacheck3D(nullcase, s=2)
Spattern(nullcase, s=2)
Spattern(nullcase, s=2, maxdim=2)

the non-zero entry at position 2 indicates that
soacheck2D does not comply with t=2

(Spat <- Spattern(nullcase, s=2, maxwt=4))
comparison to maxdim=2 indicates that
the contribution to S_4 from dimensions
larger than 2 is 1

postprocessing Spat
dim_wt_tab(Spat)

Shi and Tang strength 3+ construction in 7 8-level factors for 32 runs
D <- SOAs_8level(32, optimize=FALSE)

check for strength 3+ (default el=3 is OK)
2D check
soacheck2D(D, s=2, t=4)
3D check
soacheck3D(D, s=2, t=4)
using Spattern (much faster for many columns)

does not have strength 4
Spattern(D, s=2)
but complies with strength 4 for dim up to 3

38 util_fastSP

Spattern(D, s=2, maxwt=4, maxdim=3)
inspect more detail
Spat <- (Spattern(D, s = 2, maxwt=5))
dim_wt_tab(Spat)

util_fastSP unexported functions to support fast calculation of the stratification
pattern with fastSP and fastSP.k

Description

unexported functions to support fast calculation of the stratification pattern with fastSP and fastSP.k

Usage

nrt.wt(v)

nrt.wtx(x, s, el)

nrt.dist1(x, y, s, el)

nrt.dist(x, y, s, el)

soa.contr(s, el = 1)

soa.kernel(s, el, y)

EDy(D, s, y = 0.01, kernel = soa.kernel)

nrt.kernel(s, el)

Rd.kernel(s, el, y)

EDz(D, s, y = 0.01)

Arguments

v row vector of a full factorial

x row number of a full factorial in k q-level columns, or vector of such numbers

s the base for s^el levels

el the power for s in s^el levels

y row number of a full factorial in k q-level columns, or vector of such numbers;
or an arbitrary number (in soa.kernel, EDy, Rd.kernel)

D design with m columns in s^el levels

kernel type of kernel

util_fastSP 39

Details

The functions were modified from the code provided with Tian and Xu (2023).

Value

interim results for further functions

References

For full detail, see SOAs-package.

Tian, Y. and Xu, H. (2023+)

Index

∗ array
guide_SOAs, 10
guide_SOAs_from_OA, 11

’SOAs-package’ (SOAs-package), 2
_PACKAGE (SOAs-package), 2

attr, 18, 20, 21, 24, 29, 31, 33
attributes, 18, 20, 21, 24, 29, 31, 33

contr.FFbHelmert, 4, 6
contr.FFbPoly (contr.FFbHelmert), 4
contr.Power, 5
contr.TianXu, 4, 5, 6
count_nallpairs (ocheck), 15
count_npairs (ocheck), 15
createSaturated, 7, 24

dim_wt_tab (Spattern), 34
DoE.base, 7

EDy (util_fastSP), 38
EDz (util_fastSP), 38

fastSP, 8
FrF2, 7

guide_SOAs, 3, 10, 12
guide_SOAs_from_OA, 3, 11, 11

mbound_LiuLiu, 13
MDLEs, 3, 14
mindist (phi_p), 26

nrt.dist (util_fastSP), 38
nrt.dist1 (util_fastSP), 38
nrt.kernel (util_fastSP), 38
nrt.wrt (util_fastSP), 38
nrt.wt (util_fastSP), 38
nrt.wtx (util_fastSP), 38

ocheck, 3, 15

ocheck3, 3
ocheck3 (ocheck), 15
OSOAs, 3, 17, 24
OSOAs_hadamard, 3, 19, 24
OSOAs_LiuLiu, 3, 20
OSOAs_regular, 3, 23, 24

phi_optimize, 15, 25
phi_p, 2, 3, 14, 17, 19, 21, 24, 25, 26, 29, 31,

33
print.dim_wt_tab (print.SOA), 27
print.MDLE (print.SOA), 27
print.SOA, 27
print.Spattern (print.SOA), 27

Rd.kernel (util_fastSP), 38

soa.contr (util_fastSP), 38
soa.kernel (util_fastSP), 38
soacheck2D, 3
soacheck2D (Spattern), 34
soacheck3D, 3
soacheck3D (Spattern), 34
SOAs, 3, 28
SOAs-package, 2
SOAs2plus_regular, 3, 30
SOAs_8level, 3, 32
Spattern, 3, 4, 6, 9, 34

util_fastSP, 38

XiaoXuMDLE, 3

40

	SOAs-package
	contr.FFbHelmert
	contr.Power
	contr.TianXu
	createSaturated
	fastSP
	guide_SOAs
	guide_SOAs_from_OA
	mbound_LiuLiu
	MDLEs
	ocheck
	OSOAs
	OSOAs_hadamard
	OSOAs_LiuLiu
	OSOAs_regular
	phi_optimize
	phi_p
	print.SOA
	SOAs
	SOAs2plus_regular
	SOAs_8level
	Spattern
	util_fastSP
	Index

